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Characteristics of turbulence in a multigrid mixer
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Abstract

The paper describes an experimental investigation to determine the distribution and controls on the rate of energy dissipation per unit
mass (ε) in an oscillatory multigrid mixer. The study centred on the evaluation of the parameter γ which was treated as a spatial invariant
in the expression ε = γU2/τE in which U2 signifies a turbulence intensity and τE the Eulerian time scale. This was achieved by using
an energy balance, involving the measured power input and the energy losses. When grids were widely spaced, it was evident that the
turbulence field was characterised by two principal zones of behaviour. In an internal zone, corresponding to the domain swept by an
individual grid, U2 attained high values compared with other regions and τE was essentially constant. Outside this region, the ‘external
zone’, turbulence was characterised by a constant Reynolds number specified by RΓ 0 = U2

0 τE0/ν in which U2
0 and τE0 were scaling

parameters and ν the kinematic viscosity. It was shown that γ could be defined in terms of the far distance behaviour using the relationship
γ ∝ RΓ 0/R

2
λ0 with Rλ0 = λ0U0/ν as a turbulence Reynolds number involving the Taylor microscale λ0. From an energy balance it was

shown that R2
λ0 ∝ σRα

NR
2β+1
S with the Reynolds number RN = fSd/ν, RS = fS2/ν specifying the grid motion, the terms f, S, d and

σ referring to the grid frequency, stroke length, bar diameter and grid solidarity, respectively. Coefficients α and β were linked to the
Reynolds number dependence of the power input and the term U2

0 , respectively. For the conditions examined, it was shown that γ behaved
in accordance with the power dependence γ ∝ R−n

λ with n ≈ 0.6. General expressions were derived to characterise the properties of
turbulence in both the internal and external regions. Overall it was suggested that useful estimates of ε could be gained from the expression
ε/ε̄ = (U2/τE)/〈U2/τE〉 in which the terms ε̄ and 〈· · · 〉 refer to spatial average values. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the pioneering work of Rouse and Dodu [1], there
has been considerable interest in the use of oscillating-grid
turbulence as an alternative to wind-tunnel, grid induced tur-
bulence for studying fundamental properties of turbulence
e.g. Voropayev and Fernando [2], or as a means of control-
ling mixing regimes. Studies such as [3–6] have focused
on the spatial decay of turbulence from a single grid. Be-
cause turbulence is well-characterised and reasonably ho-
mogeneous, away from the immediate vicinity of the grid
motion, the oscillating grid has become a valuable tool for
studying transport phenomena. A separate development has
been the use of stacks of oscillating grids, discs and plates
as an alternative to impellers for controlling mixing in re-
actors. In contrast to the previous group, studies such as
[7,8] have provided valuable insight into the power gener-
ation, arising from grid movement. Very few studies have
taken the step of measuring both the power input and the
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turbulence. Bache and Rasool (B and R) [9] implemented
this approach in a study of the spatial distribution of energy
dissipation arising from a single oscillating grid, but their
study was restricted to a single level of power input. Useful
progress has been made in the combined experimental and
theoretical study of Matsunaga et al [10] which attempted
to link the character of the turbulence with grid parameters.
As with so many studies, there was no direct knowledge of
the initial power input. A further aspect is that, most stud-
ies tend to focus on the character of the turbulence away
from the grid and do not consider the character of the turbu-
lence within the domain swept by the grid. For mixers used
in practice, knowledge is generally required throughout the
whole mixing domain. For the case of a grid oscillating with
low amplitude and relatively high frequency, B and R found
that the highest levels of energy dissipation (ε) coincided
with the domain swept by the grid.

Taking a broader perspective, it must be recognised that
the energy dissipation is an important scaling parameter in
the description of isotropic turbulence [11]. As such, it fea-
tures in many studies such as coagulation kinetics [12] or
in the specification of the rupture dynamics of drops and

1385-8947/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S1 3 8 5 -8 9 47 (00 )00217 -5



68 D.H. Bache, E. Rasool / Chemical Engineering Journal 83 (2001) 67–78

Nomenclature

A coefficient in ε = Au3/l

Ac cross-sectional area of column (m2)
C coefficient in Eq. (11)
Cp constant in Eq. (5)
Cu0 constant in Eq. (24)
d bar diameter (m)
E(fu) one-dimensional power spectrum
f vibrator driving frequency (Hz)
fu frequency of u component (Hz)
F U2

obs/U
2
0

l integral length scale of energy-containing
eddies (m)

L grid spacing (m)
m index in equation 〈RΓ 〉 = CΓ X

m

mL mass of liquid in the column (kg)
n coefficient in Eq. (2)
ng number of grids in column
P1 average power input per grid

(N m s−1)
RN fSd/ν, grid Reynolds number
RS fS2/ν, grid Reynolds number
Rλ uλ/ν, microscale Reynolds number
Rλ0 U0λ0/ν, microscale Reynolds number

in external region
RΓ U2τE/ν, macroscale Reynolds number
RΓ 0 U2

0 τE0/ν, macroscale Reynolds number
in external region

S grid stroke length (m)
u, v, w rms turbulence velocity in x, y, z

directions (m s−1)
U2 (2u2 + w2)/3, average turbulence

intensity (m2 s−2)
U2

0 scaling value of U2 defined at extremity
of grid stroke length (m2 s−2)

U2
obs observed value of U2 at extremities of

grid stroke length (m2 s−2)

X defined by Xm = R
(1+2β)(1−n/2)
S R

α(1−n/2)
N

(see Eq. (27) and Fig. 8)
x, y, z orthogonal coordinate frame with x, y in

horizontal and z in vertical plane

Greek symbols
Φ i, Φe parameters defined by Eqs. (22) and (23),

respectively
Γ (2u2τu + w2τw)/3 (m2 s−1)
�0 U2

0 τE0, scaling factor (m2 s−1)
α coefficient describing Reynolds number

variation in Eq. (5)
β coefficient describing Reynolds number

variation in Eq. (24)
ε rate of energy dissipation per unit mass

(m2 s−3)

φi, φe spatial distribution functions in the
internal, external regions

γ coefficient in Eq. (1)
γ0 constant in Eq. (2)
λ Taylor length scale (m)
λ0 Scaling value of λ

in external region (m)
ν kinematic viscosity (m2 s−1)
ρ density of fluid (kg m−3)
σ grid solidarity
τ λ/U time microscale (s)
τE Γ /U2 weighted average of

Eulerian time integral scale (s)
τE0 scaling value of τE from internal region (s)
τu, τw Eulerian time integral scales of u, w

components (s)

aggregates suspended in turbulent flows [13–15]. This type
of problem demands knowledge of the local rate of energy
dissipation and signifies a raison d’etre for this paper. Here,
the principal task has been to specify the distribution of the
rate of energy dissipation per unit mass (ε) within a multigrid
oscillatory mixer and to relate the character of the turbulence
to externally controlled parameters such as the grid oscillat-
ing frequency (f), stroke length (S) and kinematic viscosity
(ν). It makes use of the energy balance approach described
in B and R, in which it was concluded that in the domain of
the energy containing eddies, ε could be estimated by using
a relationship of the form

ε = γ
u2

τu
(1)

In Eq. (1), u is a turbulence rms velocity, τu is the corre-
sponding Eulerian time integral scale and γ is a coefficient
which was observed in B and R as being independent of
distance from the grid. This observation stemmed from the
collapse (i.e normalisation) of the measured power spectrum
at different distances from the grid. The term γ may be re-
garded as a form of Reynolds number (= ετu/u

2). Indeed,
in the domain of the energy-containing eddies and where
viscous forces cannot be neglected, Hinze [16] notes that
there exists a Reynolds number which ‘would remain con-
stant during the decay of turbulence’. Similar comments are
made by George [17]. Eq. (1) closely resembles the invis-
cid estimate for the dissipation rate ε = Au3/l in which l
represents the size of the largest eddies (see [16], p. 20).
Here a distinction is made between A and γ on the grounds
that one cannot necessarily assume the equivalence l≡uτE.
Nevertheless, for progress, it will be assumed that l ∼ uτE
and therefore, that γ ∼ A. Experimental data summarised
in [18] shows A ≈ 1 at high Reynolds number whereas at
low Reynolds number it was evident that A was correlated
with the turbulent Reynolds number Rλ = uλ/ν in which λ
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refers to the Taylor microscale and ν to the kinematic viscos-
ity. With reference to analysis shown in [19], it seems likely
that the coefficient γ can be represented by the function

γ = γ0R
−n
λ (2)

in which γ 0 and n are constants. Long’s analysis [19] (which
was based on the behaviour of A = lε/u3) indicated n ≈
0.4 and γ0 ≈ 5.6, the relationship holding for the range
10 ≤ Rλ ≤ 104. At low Reynolds number (say Rλ < 10),
Sreenivasen [18] argued for the case n = 1 on the basis of
a proportionality between the integral length scale and λ.

At scales smaller than l, and where the turbulence is
isotropic, the energy dissipation can be evaluated [20], using
the expression

ε = 15ν
u2

λ2
(3)

The principal difficulty of using Eq. (3) lies in the evalu-
ation of λ2. In this analysis, modified forms of Eqs. (1) and
(3) will be used to make due allowance for the non-isotropic
nature of the turbulence near the grid — particularly at
the larger length scales. In addition to the problems of
anisotropy, it is necessary to evaluate γ in Eq. (1). This
aspect was tackled in B and R on the basis of the energy
balance

ε̄ = 1

h

∫ h/2

−h/2
ε dz (4)

in which h refers to the depth of the fluid in a mixing col-
umn. The left hand side of Eq. (4) can be determined from
the measured power input. Substitution of Eq. (1) into the
right hand side permits its evaluation via turbulence mea-
surements, with γ remaining as the only unknown. This
form of analysis is elaborated in Section 3.

2. Materials and methods

2.1. Power input

The mixer used in this study is illustrated in Fig. 1. Grids
were formed from 1 mm diameter stainless steel wire woven
mesh (termed as ‘three mesh’ i.e. three holes to the inch).
The drive shaft assembly on which the grids were mounted
was supported by Teflon bearings to minimise friction. A
crank assembly provided sinusoidal motion with a maxi-
mum stroke of 25 mm and a frequency range of 0.1–3.1 Hz.
A series of plane glass windows located in the wall of
the mixer allowed turbulence measurements to be gained
by laser doppler anemometry, using an externally mounted
probe.

The instantaneous forces on the grid were measured, us-
ing a Kistler force transducer (Type 9203) located in the
driving shaft and were translated into the average power in-
put per grid (P1) using the procedures described in B and R.

Fig. 1. Schematic design of mixer.

Most readings were based on water at 17–20◦C as the fluid
medium. Two other sets were gained using aqueous glyc-
erol solution characterised by the density ρ = 1070 kg m−3,
ν = 4.38 × 10−6 m2 s−1 and ρ = 1116 kg m−3, ν = 8.85 ×
10−6 m2 s−1. Following B and R, these were collated on the
basis of

P1 = Cpρ Acσf
3S3R−α

N (5)

in which Cp is a calibration constant, ρ the fluid density,
Ac the overall cross-sectional (area = 0.0227 m2), σ the
corresponding solidarity (i.e. grid solids area/Ac = 0.22)
and α a coefficient which controls the influence of a grid
Reynolds number (RN). The latter was defined by

RN = f Sd

ν
(6)

The value of α was obtained by first measuring the power
input using water as the fluid and then for a glycerol solu-
tion at the same f, S setting. Eq. (5) shows that the relative
power change depends on both the viscosity and the fluid
density in the formP1(ρ1, ν1)/P1(ρ2, ν2) = (ρ1ν

α
1 )/(ρ2ν

α
2 ).

Each pairing yields an estimate of α, a set of tests yielding
α = 0.35 ± 0.05 (S.D.). Fig. 2 shows a plot of P1/ρ versus
f 3−αS3−ανα at α = 0.35 for the entire data set. From this,
it was estimated that Cp = 97 ± 22 (S.E.).
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Fig. 2. Plot of power data based on form of Eq. (5) taking account of variations in grid frequency, stroke length, kinematic viscosity and fluid density
for α = 0.35.

2.2. Turbulence measurements

Turbulence measurements were obtained by using a LDA
system (TSI model 9710), comprising a one-component dual
beam system with backscatter optics and an IFA-550 signal
processor (TSI). Measurements of turbulence were recorded
at a sequence of points about 20 mm from the outer wall and
at 2 mm height intervals across two sets of three grids within
the column. Measurements included the horizontal (u) and
vertical rms components (v) and spectral analysis was used
to measure the time integral scale of each component. In all
the cases, the spectra were rendered noise free by subtracting
the background spectrum associated with zero mixing from
the total spectrum. The background rms value was in the
range of 0.001–0.005 m s−1.

2.2.1. Measurement of τE
One dimensional power spectra were obtained via pack-

aged software based on the Fast Fourier Transform tech-
nique. The selection of the sample frequency was carried
out in accordance with the techniques described in B and
R. The shape of the spectra were similar to those reported
in B and R and followed a −5/3 slope in the higher fre-
quency domain. Two approaches were adopted for deter-
mining τE In the first, the power spectra were ‘cleaned’
in order to remove the distorting effect of the driving fre-
quency (and its harmonics) on the time correlation coeffi-
cient; τEwas then calculated from the autocorrelogram. The
theory and implications of this procedure have been fully
described in [21]. This was a very time-consuming approach
as it involved a manual smoothing of the spectral data.
In the second approach, the time integral scale τu associ-
ated with the u component was computed from the inter-
cept of the power spectrum E(fu) (with fu as the frequency)

using

Lt
fu→0

τu = E(fu)

4u2
(7)

and similarly for the vertical timescale τw: Brumley and Jirka
[22] commented that such spectral intercepts can only be
considered as rough estimates for the computation (±50%)
of the respective time scales. Preliminary analysis showed
that there was satisfactory agreement (i.e. within a few per-
cent) between the two approaches. On this basis, all succeed-
ing analysis made use of the intercept approach represented
by Eq. (7).

2.2.2. Catering for anisotropy
Initial inspection of the data showed considerable evi-

dence of non-isotropy, particularly in the area swept by the
grid. For example, in these regions w2 ≈ 4u2, indicating
a greater persistence of the eddy motion along the axis of
grid movement. Similarly, it was found that the horizontal
and vertical time scales were different. In order to select a
representative timescale for inclusion in a three dimensional
equivalent of Eq. (1), the following definition was introduced

τE = Γ

U2
(8)

with

Γ = 1
3 (2u

2τu + w2τw) (9)

and

U2 = 1
3 (2u

2 + w2) (10)

The term U2 can be regarded as representing the aver-
age intensity per component. In both Eqs. (9) and (10), it
has been assumed that the horizontal turbulence components
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were identical. With these definitions, Eq. (1) can be rede-
fined with the term u replaced by U and τE defined by Eq. (8).
When the turbulence is isotropic, the modified definition re-
duces to the form shown by Eq. (1). Following similar logic,
Eq. (3) can be recast in the form

ε = C
U4

νR2
λ

(11)

with

Rλ = Uλ

ν
(12)

For progress, the term C in Eq. (11) is treated as a con-
stant and we recognise the speculative nature of this assump-
tion. The strongest argument in its favour, stems from the
self-preserving form of the energy spectrum, this being akin
to the remarks by Hinze [16] noted in the introduction. For
isotropic turbulence C = 15, this following from Eq. (3). In
non-isotropic turbulence it is rather difficult to evaluate C.
For progress, the value C ∼ 15 was adopted as a convenient
estimate of its magnitude. Later in (Eq. (32)), it will be seen
that it is possible to evaluate ε without direct knowledge of
C and the assumption is not too critical.

It is also useful to note that the combination of Eq. (1) (in
modified form) with Eqs. (8) and (11) leads to the identity

R2
λ = C

γ
RΓ (13)

with

RΓ = Γ

ν
= U2τE

ν
(14)

3. Analysis

3.1. Base trends

Two representative sets of of data are shown in Figs. 3
and 4 which illustrate the spatial dependence of U2, τE, UτE,
U2τE, and U2/τE signifying the energy, timescale, length-
scale, diffusivity and energy dissipation, respectively for
packs of 19 and 10 grids. In the case of the 19 grid data
(where every point within the sample range is ‘swept’ by
a grid), the turbulence parameters are reasonably uniform,
but with typical scatter. The 10 grid data, spanning the area
swept by each of two grids, together with intervening space
is of considerable interest. In the zones swept by the grids τE
is virtually constant, appearing to be unconnected with the
U2 dependence, but increases at distances beyond the stroke
amplitude. In contrast, the parameter U2τE is dominated by
the U2 variation within the stroke distance, but remains es-
sentially constant within the intervening space. It is seen
that the length scale UτE increases with distance beyond the
stroke domain until the turbulence fields generated by ad-
jacent grids interact. Amongst these spatial variations, the

most striking are those associated with the dissipation term
U2/τE, which shows that the vast majority of the dissipation
is confined to the regions swept by the grid. In contrast, the
dissipation within the intervening region is extremely low.

The pattern of U2τE is of particular interest. Eq. (13)
shows that, where U2τE varies such as in the area swept by
the grid (termed as an ‘internal’ zone), Rλ must also vary.
Similarly, in the the domain outside the area swept by the the
grid (termed as the ‘external’ region) where U2τE is essen-
tially constant, it is deduced that Rλ must also be constant.

3.1.1. Viscosity dependence
A series of measurements were carried out to discern the

sensitivity of the turbulence parameters to a change in vis-
cosity, using water at about 20◦C (νw = 1.0 × 10−6 m2 s−1)
and a glycerol solution with νg = 2.0 × 10−6 m2 s−1.
In this series, the set of 19 grids was used at the setting
f = 2.05 Hz and S = 0.018 m. To avoid systematic er-
rors, the fluid was swapped at every measuring point, all
other conditions remaining identical. It should be remarked
that this procedure was very time-consuming, measure-
ment and analysis taking about 2 months. Data showed that
〈U2〉water/〈U2〉glycerol ∼ (νw/νo)

−0.20 in which the term
〈U2〉 refers to the spatial average value. In the case of the
timescales 〈τE〉water/〈τE〉glycerol ∼ (νw/νo)

0.13. Of the two
dependences, the behaviour of 〈U2〉 is regarded as the more
accurate, the timescale being more prone to error as noted
in Section 2.2. In both the cases, the viscosity dependence
is fairly small.

3.1.2. Sensitivity to grid motion
The parameters illustrated in Figs. 3 and 4 can also be ex-

amined in terms of their spatial average variation. While this
approach disguises the spatial variations, it provides insight
into the scaling factors which link the character of turbulence
to the initial conditions. At this stage, the objective was to
discern the dependence of 〈U2〉 on f and S. There exist many
potential analytical forms for representing the behaviour of
〈U2〉. The behaviour of 〈U2〉 must be governed by the fac-
tors which control U2. On dimensional grounds, one must
expect U2 ∝ f 2S2 as the primary relationship. Many stud-
ies include a dependence on the mesh size e.g. Matsunaga
et al [10], but few have addressed the potential influence
of viscosity, this being encapsulated in a Reynolds number
dependence. In the present analysis, a number of empiri-
cal forms were postulated to represent U2 and their conse-
quences in the subsequent analysis was examined in depth.
On the basis of such analysis, it was concluded that the un-
derlying scaling of U2 (excluding mesh geometry) was best
represented by U2 ∝ f 2S2RS

β in which β is a constant,
the Reynolds number RS being defined by

RS = f S2

ν
(15)

Using the trial function, the best fit of the 〈U2〉 data was
obtained with β = 0.25 ± 0.05 (S.E.) (see Fig. 5). This
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Fig. 3. Plot showing 19 grid data at f = 2.05 Hz, S = 18.17 mm, L = 17 mm. GC refers to the grid centre. The shaded areas signify the zones swept
by the grid.

assessment was backed by a multi-regression analysis which
showed 〈U2〉 ∼ f 2.0S2.5(4) in which the index values of
f and S are different. This behaviour also fits in with the
viscosity dependence (〈U2〉 ∼ ν−0.2) noted above. For the
record, we note that the data shown in Fig. 5 was also
well-fitted by 〈U2〉 ∝ f 2S2R

β
N with β = 0.48; however, the

latter relationship does not comply with the observed de-
pendence on changes in viscosity. Further, the form 〈U2〉 ∝

f 2S2R
β
N implies that the index values of f and S are identi-

cal. Again, this did not comply with trends in the data.

3.2. Energy balance

Having measured the power input per grid (P1), ε̄ follows
from the definition



D.H. Bache, E. Rasool / Chemical Engineering Journal 83 (2001) 67–78 73

Fig. 4. Plot showing 10 grid data at f = 2.05 Hz, S = 12.14 mm, L = 34 mm. GC refers to the grid centre. The shaded areas signify the zones swept
by the grid and are referred to as ‘internal’ zones.

ε̄ = ngP1

mL
(16)

in which ng refers to the number of the grids and mL is the
mass of liquid in the column. From this, the energy balance
(see Eq. (4)) for the stack is well represented by the statement

ngγ

[∫
U2

τE
dz +

∫
U2

τE
dz

]
= ngP1h

mL
(17)

internal external

The terms ‘internal’ represents the integration over the do-
main swept by any individual grid, while the term ‘external’
refers the integration over the remaining space within the
column. On the basis of the behavioural features shown in
Fig. 4 and illustrated schematically in Fig. 6, the charac-
ter of the turbulence can be represented by the following
dependencies

Internal:

τE = τE0 (18a)
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Fig. 5. Dependence of spatial value of turbulence intensity per grid
〈
U2
I

〉
on the grid velocity scale fS and Reynolds number in the form of Eq. (24) at

the best fit value β = 0.25. NB.
〈
U2

1

〉 = 〈
U2

〉
/ng.

U2 = U2
0 φi(z) (18b)

External:

U2 = U2
0ϕe (z) (19a)

τE = τE0ϕ
−1
e (z) (19b)

in which τE0 and U2
0 are reference values of the time scale

and turbulence intensity at the common boundary of the
regions (say at ±S/2) at which ϕi(z) = ϕe(z) = 1.

In the external region, the paired equations satisfy the ob-
servation U2τE = U2

0 τE0. This allows Eq. (13) to be written
as

γ = C
U2

0 τE0

νR2
λ0

(20)

in which the Reynolds number Rλ0 is spatially invariant in
this region. Substitution of Eqs. (18)–(20) into Eq. (17) leads
to

CU4
0

νR2
λ0

(Φi + Φe) = P1

mL
(21)

Fig. 6. Description of internal region and external region and schematic form of variation in turbulence parameters.

in which Φ i and Φe refer to the internal and external regions
respectively with the schematic definitions

Φi =
∫ S/2

−S/2
ϕi(z) dz (22)

Φe=
∫ −S/2

−h/2
ϕ2
e (z) dz+

∫ h/2

S/2
ϕ2
e (z) dz=2

∫ h/2

S/2
ϕ2
e (z) dz (23)

By performing a numerical integration of U2 across the
internal zone (where it is clearly defined; as in Fig. 4) and
normalising by an estimate of U2

0 , it was shown that Φ i ≈
2.8S. The evaluation of Φe is more difficult, because it ap-
plies to the whole of the remaining part of the column, and
in a multi grid system can only be partially observed in re-
gions which are not swept by grids. Its value can be esti-
mated by assuming the dependence U2(z) = U2

0 (S2/4z2)
i.e. U2 = U2

0 at S/2 and U2 ∼ z−2 as has been frequently
observed (see Long [4]). Incorporating this spatial variation
into Eq. (23), and integrating shows Φe = S/3. Hence one
finds that (Φ i + Φe) ≈ 3.1S or Φ i/(Φ i + Φe) ≈ 0.9; this
shows that the bulk of the energy dissipation takes place
within the regions swept by the grids.
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Fig. 7. Sensitivity of parameter γ to Reynolds number Rλ0. Trend line
is γ = 4.3R−0.57

λ0 .

Because the magnitude of 〈U2〉 is dominated by the be-
haviour of U2 in the internal region, it can be assumed that
the form of U2

0 complies with the behaviour of 〈U2〉 shown
in Fig. 5. Thus, it is suggested that U2

0 can be represented by

U2
0 = Cu0σf

2S2R
β
s (24)

in which Cu0 is a system constant (≈0.12; this has been
estimated from the 10 grid data in conjunction with Eq. (A.1)
shown in Appendix A). Note that the form of Eq. (24) must
comply with the overall structure of Eq. (21) and accounts
for the inclusion of σ . Using Eqs. (5) and (24) to replace
the terms P1 and U4

0 in Eq. (21), this leads to the definition

R2
λ0 = 3.1 CC2

u0σ

Cp
Rα

NR
2β+1
S (25)

This deduction is important because it relates Rλ0 to the
initial conditions and accounts for the coupling of viscous
dependencies within the power input and U2.

A second view of the energy balance stems from Eq. (4)
in the form

γ = ngP1/mL

〈U2/τE〉 (26)

Applying Eqs. (25) and (26) to the individual sets of data
leads to the plot shown in Fig. 7. It is seen that γ ∼ 1 and
decreases with increasing Reynolds number. A fit of the data
using Eq. (2) leads to n = 0.57 ± 0.13 (S.E.) and γ 0 ∼ 4.3.
Analysis shown below provides an alternative evaluation of
n and appears to be less prone to scatter.

3.3. Identity of time scale τE

Combination of Eqs. (2) and (12) in conjunction with
Eq. (25) leads to expression

Fig. 8. Based on Eq. (27) in the form 〈RΓ 0〉 = CΓ X
m such that m = 1

using α = 0.35, β = 0.25, n = 0.57.

U2
0 τE0

ν
= CΓ R

(1+2β)(1−n/2)
S R

α(1−n/2)
N (27)

By plotting the spatial average 〈RΓ 〉 in the external region
in the form of the power function 〈RΓ 〉 = CΓ X

m with
X defined by part of the right hand side of Eq. (27) and
m an index, may be determined. Parameter n was adjusted
by trial and error until a value was reached (n = 0.57)
corresponding to m = 1; i.e. a match between the calculated
and observed variations of 〈RΓ 〉. The corresponding plot is
shown in Fig. 8. It is seen that both approaches yield the
same estimate of n in Eq. (2). Having determined RΓ , the
time scale follows from ν RΓ /U2 i.e.

τE0 ∼ d2

ν
R

[(1+2β)(1−n/2)−β]
S R

[α(1−n/2)−2]
N (28)

By replacing RS and RN by their definitions, the dimen-
sions of the right hand side for the index values of the com-
ponent term forming the right hand side of Eq. (28) are as
follows:

f : (1 + 2β)
(

1 − n

2

)
− β + α

(
1 − n

2

)
− 2

S : (1 + 2β)(2 − n) − 2β + α
(

1 − n

2

)
− 2

d : α
(

1 − n

2

)

ν : −(1 + 2β)
(

1 − n

2

)
+ β − α

(
1 − n

2

)
+ 1
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Table 1
General descriptors of internal and external regions

Internal External

U2 = U2
0 ϕi (z) U2 = U2

0 ϕe (z)

τE = τE0 τE = τE0ϕ
−1
e (z)

Rλ = Rλ 0 ϕ
1/2
i (z) Rλ = Rλ0

R� = R�0ϕi (z) RΓ = RΓ 0

U2/τE = (U2
0 /τE0)ϕi (z) U2/τE = (U2

0 /τE0)ϕ
2
e (z)

λ2 = λ2
0 λ2 = λ2

0ϕ
−1
e (z)

τ/τE0 = (C/γ0)R
n−1
λ0 ϕ

−1/2
i (z) τ/τE0 = (C/γ0)R

n−1
λ0

For example, substituting α = 0.35, β = 0.25, n = 0.57
shows

〈τE0〉 ∼ d0.25

f 0.93ν0.07S0.10
(29)

According to this deduction, the time scale exhibits a very
weak variation on viscosity, which is consistent with the be-
haviour reported in Section 3.1. The relationship also indi-
cates that 〈τE0〉 is weakly dependent on S. Regression anal-
ysis of 〈τE0〉 against S at fixed f showed 〈τE0〉 ∼ S−0.13,
which is close to the dependence shown in Eq. (29).

3.4. Identity of Taylor microscale

Just as U2
0 and τE0 have been defined as scaling factors,

one may also introduce the factor λ2
0 to facilitate the scaling

of the λ2 variation, together with related parameters such
as the time microscale τ = λ/U . Combination of Eqs. (24)
and (25) leads to the definition

λ2
0

d2
∼ Rα−2

N R
1+β

S (30)

For example, with α = 0.35 and β = 0.25, this leads to
dependence

λ2
0 ∼

(
ν

f

)0.4

S0.85d0.35 (31)

3.5. General descriptors

Table 1 Summarises the principal characteristics of the
internal and external region.

4. Discussion

Through the energy balance, it has been shown how the
major scaling factors controlling the state of turbulence can
be linked to the power input of the grid, the analysis being
underpinned by Eq. (1) as a statement of the energy dissi-
pation. A critical feature of the analysis has been the spec-
ification of γ . This has been treated as an invariant which
permeates the spatial distribution; in doing so, it ’transports’
information about the initial conditions. The grounds for this
assumption were considered in the Introduction. In the con-
text of the present study, it has led to the development of a

framework which is consistent with the observed properties
of the turbulence and their response to the initial conditions.
Eq. (13) shows that γ ∝ RΓ /R

2
λ i.e. it implies a linkage

between the macroscale and the microscale which remains
at some fixed value. In the internal region, both RΓ and R2

λ

have the same spatial variation, whereas in the external re-
gion both are constant. Indeed, it is through the far field de-
pendence that one can specify γ in terms of the Reynolds
number Rλ0 (as in Eq. (20)), Rλ0 being the only unknown
quantity. The evaluation of Rλ0 stems from Eq. (21) and
leads to Eq. (25). It is worth emphasising that Eq. (25) is
a statement of the energy balance and shows some crucial
links between the character of the turbulence and the initial
conditions.

Experimental evidence indicates that the turbulence field
can be envisaged as existing in the form of an internal re-
gion swept by an individual grid and an external region
for distances beyond. When the grids are a sufficient dis-
tance apart, these regions are distinct as illustrated in Fig. 4.
When the grids are closer together (see Fig. 3), the distribu-
tions merge. Although the turbulence generated in the exter-
nal region by any individual grid is obscured by the turbu-
lence from other grids, its character continues to be ’exerted’
through the terms Rλ0 and γ . Eq. (17) is a conceptual state-
ment which shows the links between single grid and multi-
grid behaviour, but it must be used with caution. When us-
ing multiple grids, Eq. (26) provides a means of estimating
γ on the basis of Eq. (1) and is unambiguous statement of
the energy balance. However, the key advantage of Eq. (17)
is that allows one to dissect the behavioural trends with the
terms U2

0 and τE0 selected as convenient scaling parameters
based on single grid behaviour. The form of these param-
eters are defined through Eqs. (24) and (28), respectively.
Although λ2

0 has been introduced as a scaling parameter, it
is not independent of the terms U2

0 and τE0. The summary
provided in Table 1 provides useful insight into the way in
which the character of the turbulence may be specified.

The relative values of the terms Φ i and Φe in Eq. (21)
emphasise that 90% of the energy dissipation takes place
within the internal region, a feature which can be usefully
exploited in order of magnitude calculations. A puzzling fea-
ture is the disconnection between U2 and τE in the internal
zone. Inspection of Fig. 4 shows that U2 is at its maximum
in the centre of the stroke and least at its extremities, sug-
gesting that it is being driven by the instantaneous velocity
of the grid. In the case of the time scale, it is largely a func-
tion of the grid frequency as shown in Eq. (29). Its lack of
dependence on the stroke length can be explained through
Eq. (28), in which the observed value of n (taken as 0.57) is
close to the value n = 0.60 at which the index of S is zero
for the observed α and β.

Most studies of grid turbulence (see De Silva and Fer-
nando [6]) have tended to focus on the character of the tur-
bulence in the external region. Its dominant feature is the
constancy of the Reynolds number Rλ0 as noted in Hopfin-
ger and Toly [5], implying that ε ∼ U4/(νR2

λ0) before the
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onset of the final decay. The dependence of the U2 on the
Reynolds number RS (through Eq. (24)) implies that its sen-
sitivity to f and S are different (viz U2 ∝ f 2+βS2+2β ). This
form of behaviour has featured in some studies, e.g. Hopfin-
ger and Toly [5], but generally it must be recognised that
these subtle variations and indeed the dependence on vis-
cosity have received scant attention in the previous studies
on grid turbulence.

The dependence of the power input on the Reynolds num-
ber RN in Eq. (5) (α = 0.35) is well tested. However, it
should be regarded as representative of the range of grid
Reynolds numbers used in this study and the type of grid
which was used. Nevertheless, it is an important parameter
because it imparts a viscosity dependence which must be
reflected in the character of the turbulence. For example, it
is associated with β = 0.25 in Eq. (24). It is of interest to
note that α + β = 0.6, this closely matching the value of n
which provided a best fit of the data shown in Figs. 7 and
8. Whether the match of values corresponding to an identity
of the form α + β = n is coincidental, or perhaps reflecting
an underlying control on the viscosity interdependencies is
an aspect which deserves further investigation. Certainly, as
the various forms of Reynolds numbers increase i.e. RN, RS
and Rλ, there must be a tendency towards the inviscid flow
description in which α, β and n each tend to zero — a fea-
ture which is consistent with the form of the relationship
under discussion. Similarly as Rλ → 0, n → 1 (as reported
in [18]); thus it seems likely that both α and β lie between
0 and 1. It is of interest to note that when n → 1, the com-
bination of Eqs. (13) and (2) shows λ ∝ UτE whereas at
high Reynolds number (n → 0), λ2 ∝ ντE; these show
quite different dependencies between the microscale and the
macroscale.

When applying the energy balance, it is suggested that
Eq. (26) provides the best route for estimating γ for inclu-
sion in Eq. (1). Although Eq. (17) also appears to fulfil the
same task, it is a conceptual statement and must be applied
with caution when the turbulence fields overlap. The anal-
ysis provides clear evidence to show that γ is sensitive to
Rλ under the conditions examined, this being represented
by Eq. (2) with γ 0 = 4.3 and n ≈ 0.6. These values are
similar to those reported in [19], but correspond to smaller
values of A (= εl/u3) aroundRλ ∼ 10; this may be due to
differences in the specification of the integral length scale l
(see Section 1). Without the dependence of γ on Rλ shown
by Eq. (2), it would be extremely difficult to match the vis-
cosity dependences of the power input to the characteristics
of the turbulence. When γ is treated as a spatial invariant,
the combination of Eqs. (1) and (4) lead to the attractive
simplification

ε

ε̄
= U2/τE

〈U2/τE〉 (32)

This provides a relatively straightforward means of dis-
cerning ε from knowledge of U2 and τE. An Imponderable

such as the magnitude of C in Eq. (11) (but treated as con-
stant), cease to be important because it cancels out.

Overall, the energy balance approach appears to offer con-
siderable opportunities for diagnosing the properties of tur-
bulence as well as providing a route for estimating the local
average rate of energy dissipation.

5. Conclusions

On the assumption that the factor γ = ετE/U
2 behaves as

a spatial invariant, a general framework has been developed
to describe the salient properties of the turbulence in terms
of the initial conditions.

When the grids were widely spaced, it was evident that the
turbulence field was characterised by two principal zones of
behaviour. In an internal zone, corresponding to the domain
swept by an individual grid, U2 attained high values com-
pared with other regions and τE was essentially constant.
Beyond this region, the turbulence was characterised by a
constant Reynolds numbers Rλ0 = λ0U0/ν with λ0 and U0

as scaling parameters, the dependence R2
λ0 ∝ σRα

NR
2β+1
S

providing a connection between the properties of turbulence
and the initial conditions.

For the conditions examined, it was shown that γ be-
haved in accord with the power dependence γ ∝ γ0R

−n
λ with

γ0 ≈ 4.3 and n ≈ 0.6. It was through this relationship
that one was able to specify the behaviour of a character-
istic Eulerian time scale τE0 in terms of the initial condi-
tions, this being defined via the relationship U2

0 τE0/ν =
CΓ R

(1+2β)(1−n/2)
S R

α(1−n/2)
N .

On the basis of the spatial invariance of γ , useful estimates
of the rate of energy dissipation per unit mass can be gained
from the expression ε/ε̄ = (U2/τE)/〈U2/τE〉 in which the
terms ε̄ and 〈· · · 〉 refer to spatial average values.
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Appendix A. Evaluation of U2
0U
2
0U
2
0

The scaling term U2
0 is tied to its observed equivalent U2

obs
at say ±S/2 (in Fig. 9) for an isolated grid. In a multigrid
regime, the turbulence fields will interact unless the grids are
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Fig. 9. Schematic layout for calculation of U2
obs.

sufficiently spaced. In order to estimate U2
0 on the basis of

multigrid data, it is assumed that the contributions to U2
0 are

additive, independent, and depend on a decay of the form
U2 = U2

0 S
2/4z2 in the external region, this satisfying the

definition U2 = U2
0 at z = ±S/2. Under this assumption,

the combined influence of a set of grids distance L apart at
a reference point z = S/2, is simply a summation based on
a sequence of origin shifts of the form

F = U2
obs

U2
0

= 1 + S2/4

(L − S/2)2
+ S2/4

(L + S/2)2

+ S2/4

(2L − S/2)2
+ S2/4

(2L + S/2)2
+ · · · (A.1)

Applying Eq. (A.1) to the 10 grid data with L = 34 mm
and S in the range 10.8–20.7 mm generates F values of
1.07–1.29. Under this scheme U0

2 = U2
obs/F .
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